If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+162x+585=0
a = 1; b = 162; c = +585;
Δ = b2-4ac
Δ = 1622-4·1·585
Δ = 23904
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{23904}=\sqrt{144*166}=\sqrt{144}*\sqrt{166}=12\sqrt{166}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(162)-12\sqrt{166}}{2*1}=\frac{-162-12\sqrt{166}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(162)+12\sqrt{166}}{2*1}=\frac{-162+12\sqrt{166}}{2} $
| 5a-(-2a+3)=-2a-(-a+3) | | 10*9-x+x=10x+9-x+27 | | 2/x+6=14 | | 5a-(2a+3)=-2a-(-a+3) | | 154=2{(2+2b)+b | | 3x+6-10=4 | | 3/2x+1/3=x-1/3 | | X²+y²-4y=5 | | (3x×25)=27x5 | | (3x×25)=27×5 | | 2y=-0.06 | | 7x-4=3x+19 | | 9m−4=77 | | 4K+13=8k+25 | | -25+7x=12x-6 | | 7-4v=-17 | | -3(-5y+8)=-54 | | 8^x=5^(2x-1) | | 1/3x+1/4x-1/2=-3 | | 7x+21=6x+57 | | 36y=54 | | F(x)=(2x5x+1) | | 12/3+47/8=x | | 7x+7=3x-4 | | -6x-21=-3x | | -7x+28=-3x | | 7y=3y-40 | | x-7+3x-27=180 | | 21+6t=(t+3) | | -12-(-19)=x/9 | | 6x(3+2x)= | | 31+4y-7=14y-11-3y |